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An exact result is calculated numerically for the dilute limiting, zero shear viscosity 
of bimodal suspensions of hard spheres. The required hydrodynamic functions are 
calculated from recent results for the resistivities of unequal spheres. Both the hydro- 
dynamic and Brownian contributions to the Huggins coefficient exhibit a minimum 
that is symmetric in mixing volume fraction. The resultant minimum deepens with 
increasing size ratio. The results are discussed in the light of published measurements 
of the viscosity for bimodal suspensions and previous phenomenological theories. The 
reduction of viscosity upon mixing is seen to be a result of near-field hydrodynamic 
shielding of asymmetric particle pairs. It is also shown that the use of far-field 
hydrodynamic interactions yields qualitatively incorrect results for the viscosity of 
binary mixtures. A parametrization of the bimodal results allows an estimation of the 
effects of suspension polydispersity on the Huggins coefficient. For polydispersities 
of ten percent or less, the Huggins coefficient is essentially unchanged from the value 
calculated for an equivalent, monodisperse suspension at equal volume fraction. A 
parametrization of these results is provided for relating the reduction in Huggins 
coefficient to the polydispersity index. 

1. Introduction 
The importance of polydispersity on the equilibrium and mechanical properties 

of colloidal suspensions has been a significant technological and scientific issue 
(Sweeny & Geckler 1954; Chong, Christiansen & Baer 1971; Jeffrey & Acrivos 1976; 
Dickinson, Parker & La1 1981; Stapleton, Tildesley & Quirke 1990; DAguanno 
& Klein 1991; DAguanno et al. 1993; Woutersen 1992). Indeed, technologies 
have employed mixing of specific size ratios to achieve flowability at high solids 
concentrations (Chong et al. 1971; Goto & Kuno 1984; Senqun & Probstein 1989; 
Shapiro & Probstein 1992). It is almost universally observed that the addition of a 
small volume of particles of small size to an already concentrated suspension of big 
particles results in dramatic viscosity reductions (Sweeny & Geckler 1954; Chong 
et al. 1971; Goto & Kuno 1982, 1984). Further, at fixed total volume fraction, the 
viscosity of a bimodal suspension usually shows a minimum with respect to mixing 
volume ratio of the two sizes, and this minimum is on the side rich in large particles 
(Farris 1968; Ackermann & Shen 1979; Goto & Kuno 1984). 
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Phenomenological theories have been developed to explain the viscosity reductions 

that can arise from mixing particles of different mean size distributions (Farris 1968; 
Chong et al. 1971). Most of these references deal with relatively large particles 
such that Brownian motion does not directly influence the rheology. The proposed 
mechanism is based on an excluded volume effect (Ackermann & Shen 1979; Goto 
& Kuno 1984; Shapiro & Probstein 1992), where size asymmetry results in a more 
efficient packing and a higher total solids volume fraction. Often in modelling sus- 
pensions with large size asymmetries, the small particles are taken to act as a filler 
for an effective fluid within which the large particles move (Roscoe 1952; Senqun 
& Probstein 1989). We are aware of only two previous attempts to use particle 
microhydrodynamics and statistical mechanics to rigorously calculate this mixing ef- 
fect (Ohtsuki 1983; van Iersel 1987), wherein the major impediment was the lack of 
hydrodynamic interaction coefficients for unequal spheres. Recent Stokesian dynam- 
ics simulations by Chang & Powell (1993) of hard spheres in two dimensions have 
qualitatively demonstrated some of the aforementioned experimental observations. 
Clearly, an exact calculation of bimodal suspension viscosity could provide important 
physical insight and a firm foundation for understanding this viscosity reduction 
effect. Given our ignorance concerning many-body interactions in suspensions, such 
an exact calculation is only feasible for the dilute, or two-body limit. Exact calcu- 
lations for the effects of polydispersity on the sedimentation velocity and diffusivity 
for dilute suspensions of colloidal particles have been performed (Batchelor & Wen 
1982a,b; Batchelor 1983). However, to date there have been no exact calculations 
of the influence of polydispersity on the shear viscosity and only recently have there 
been attempts to measure this phenomenon for low concentrations of particles by 
Woutersen & de Kruif (1993), and for higher concentrations by Rodriguez, Kaler & 
Wolfe (1992). As calculations at high Piclet number, which would more closely 
correspond to the bulk of the experimental data mentioned above, are not feasible for 
shear flows (see Batchelor & Green 1972a,b), a logical starting place is the tractable 
regime of low Pdclet number. 

Such a calculation has additional value as the dilute limiting viscosity is an im- 
portant physical characterization measurement for colloid scientists. Expanding the 
ratio of suspension to solvent viscosity ( p o )  in terms of powers of particle mass 
concentration c yields a virial expansion: 

(1.1) % / P o  = 1 + [ d o c  + kH[&2 + . * * 3 

where [qlo is the intrinsic viscosity, which is related to the molecular weight or vol- 
ume of the particle (Hiemenz 1986), and k~ is the Huggins coefficient. Determination 
of the Huggins coefficient yields important information about the colloidal forces 
(Russel 1984; Russel, Saville & Schowalter 1989). This is analogous to measuring 
the second virial coefficient for the pressure, which can be written purely in terms of 
the interparticle force law (McQuarrie 1976). Thus, exact calculations of the Huggins 
coefficient are necessary for extracting the interparticle potential from viscosity mea- 
surements. As will be shown, the Huggins coefficient also depends explicitly upon 
the size ratio of the particles and, hence, polydispersity. Thus, confident use of this 
experimental technique requires knowing how the Huggins coefficient varies with size 
polydispersity. 

Recently, Jeffrey (1992) has calculated the hydrodynamic resistivities between pairs 
of hard, spherical particles of different radii. As shown here, this becomes the 
basis for the exact numerical calculation of the limiting viscosity of dilute, bimodal 
suspensions of hard spheres. In what follows, we employ the established derivations 
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of Batchelor & Green (1972), and Batchelor (1976) to determine the stresses acting 
in a bimodal suspension of hard spheres in the dilute limit. Both the stresses and the 
radial distribution function are calculated numerically in the linear response limit. 
Results are obtained for the limiting viscosity of bimodal mixtures up to size ratios of 
10 as a function of the relative volume ratio. This becomes the basis for calculating 
the limiting viscosity of dilute suspensions with arbitrary size distribution. Results 
are then presented for a continuous Schulz distribution of sizes as a function of 
pol ydispersity. 

2. stresses 

materials, is defined for steady shear as 
The effective suspension viscosity qs, which is a complex quantity for viscoelastic 

I: = Z.T. + 2qsptptptE = I .T.  + 2p0€ + (S') + ( S B )  + (SH), (2.1) 

where 1 denotes the stress tensor and Z.T. is an isotropic term not of interest 
here. The second term on the right-hand side is the solvent contribution (po being the 
solvent viscosity). The following terms are the explicit contributions from interparticle 
forces ( I ) ,  Brownian motion ( B ) ,  and hydrodynamic interaction (H), separated out as 
stresslets. The brackets ( ) denote an ensemble average over all N particles in volume 
V ,  which are subjected to an applied flow field characterized by the rate of strain 
tensor E. 

The stresslets arising from the various colloidal forces are calculated by ensemble 
averaging the appropriate pair stresslet over the pair distribution function character- 
izing the suspension microstructure. For the low shear viscosity only the equilibrium 
and linear response microstructures are necessary to calculate the stresslets to linear 
order in the strain rate. Because the necessary equations relating these stresslets to 
the interparticle forces have been previously derived by Batchelor & Green (1972a, b), 
Batchelor (1977) and Felderhof & Jones (1987) and are frequently used for calcula- 
tion of the viscosity (see, for example Russel 1984; Wagner & Russel 1989; Dhont 
1989; Brady & Bossis 1988; Brady 1993a,b), only an overview of the derivation 
will be presented here. The interested reader is encouraged to examine the works of 
Batchelor & Green (1972a, b) and Batchelor (1977) for the complete derivations. 

The hydrodynamic contribution to the stresses arises because the solid particles do 
not deform with the surrounding fluid, but rather, generate additional strain fields in 
the flowing fluid. As these fields influence other Brownian particles and propagate 
over long range, rigorous accounting of the total hydrodynamic stress is a non-trivial 
problem requiring renormalization (Batchelor & Green 1972a, b;  Batchelor 1977; 
Felderhof 1988). Rigorous results are possible in the limit of pair hydrodynamic 
interactions for the stress dipoles. Batchelor & Green (1972a, b) summed over these 
dipoles to calculate their contribution to the bulk stress. 
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The first term ;$, (with $ = $7ra3n the particle volume fraction where n is the number 
density) is the classical Einstein contribution, which is calculated by integrating 
over the disturbance flow field due to a single particle. The :$’ term arises from 
renormalizing the summation over hydrodynamic dipoles, which leads to the integral, 
written in convergent form above. Note the additional dependence on volume 
fraction through the pair correlation function g(r/a, b/a). The hydrodynamic function 
.?@/a, b/a) characterizes the stresslet induced on a particle pair by the applied shear. 
Notice also that to linear order in the shear rate this stress depends only on the 
equilibrium structure. This is intuitive as the hydrodynamic dipoles are themselves 
induced by the flow; thus this source of additional stress is already of linear order in 
the deformation. 

For bidisperse systems the equations become 

with Li, = ai/aj the size ratio. 
The contribution from the thermodynamic forces to the stresslet has two parts: 

the direct interaction of particles, and the induced hydrodynamic stresslets due to 
these forces inducing particle motion. It is well established that the lubrication forces, 
which prevent interparticle interpenetration, also nullify any contribution from the 
hard-sphere potential (Brady & Bossis 1988; Wagner & Russel 1989). Thus, only 
the Brownian motion contributes to the thermodynamic stresslets for hard spheres. 
The presence of hydrodynamic interaction couples the relative Brownian motion of 
two particles in the suspension (Batchelor 1976,1977; Brady & Bossis 1988; Brady 
1993a, b). For example, two particles close together at some instant in time experience 
a correlated Brownian force due to the intervening solvent that prevents the stochastic 
Brownian forces from overlapping two hard particles. Calculation of the stress requires 
renormalization as the integral over these stresslets is non-convergent due to the long 
ranges of the non-equilibrium structure and the hydrodynamic coupling. The result 
of this operation as performed by Batchelor (1977) is a convergent expression for the 
Brownian stress, which in the two-particle limit becomes 

rr 

r2 
W ( r )  (- - $1) = 2~ C ;  

with C the shear mobility tensor defined as: 

Here the scalar functions A(r)  and B ( r )  are calculated for specific size ratios (see 
Appendix A). 

The non-equilibrium pair distribution function P2(r) can be calculated in the 
linear response limit. The angular dependence can be separated out along with the 
equilibrium structure to yield 
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The function f(r/a, b/a) is the radial component of the shear distortion and the 
Pkclet number, defined as 

3np0(a + b)ab 1 E 1 Pe = 
2kb T 9 

gauges the relative strength of the flow to the Brownian motion. Using the above 
the Brownian stress for a polydisperse suspension in the two-body limit and written 
explicitly in terms of a continuous size distribution becomes 

P e ( $ ) g ( s , : ) f ( s , $ )  ( 3 ) d s : E  

where s = 2r/(a + b). 
Substitution of the bimodal size distribution, 

p(a) = x16(a - U l )  + x26(a - a2) (2.9) 

with x i  the number fraction of type i ,  and integration over the angular terms yields 

2 

(s”) = 2 p o ~ C  4 i4 j IB(J - i j ) -  (2.10) 
i,j=l 

Here, 

(2.1 1) 1 I B ( A i j )  = & (i( 1 + A,,)) I i j  s2gij(s, I i j ) f i j ( ~ ,  A,)  W i j ( ~ ,  Iij)ds, 
2rij -21w 

,$ = -. 
ai + U j  

It is clear from the above equations that calculation of the hydrodynamic contribu- 
tion can proceed given an expression for the equilibrium pair distribution function and 
the bimodal hydrodynamic coefficients. However, the Brownian contribution requires 
explicit knowledge of the linear response term for the pair distribution function under 
an applied shear field. Earlier work by Batchelor & Green (1972) provides a method 
for calculating this distortion using a Smoluchowski equation for the dynamics. 

3. Smoluchowski equation for the non-equilibrium structure 
The non-equilibrium microstructure of colloidal dispersions can be directly calcu- 

lated from a Smoluchowski equation (Batchelor & Green 1972a, b; Batchelor 1977; 
Ohtsuki 1981 ; Felderhof 1988). This N-body conservation equation in configuration 
space is the continuity equation for the N-body probability PN with the flux given by 
the linear relationship PNUi with Ui the velocity of the ith particle. The conservation 
equation in configuration space is integrated directly to the pair level, neglecting all 
higher-order correlations, to yield 

ap2 
- + v * (P2U) = 0, at 
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defining the relative velocity U = U, - UL, which is obtained from a colloidal force 
balance containing the details of the interactions between two particles. At the 
two-body level this force balance becomes 

-kbTVlnP*+V@=D-’ . (U- -*s+2C I€), 
r-s = E - s + n x s (3.2) 

The first term is the Brownian or entropic force, given as the gradient of the probability 
distribution (Batchelor 1976) while the second is the interparticle force, written in 
terms of the pair potential @. Balancing these is the hydrodynamic force, where D 
denotes the relative Brownian diffusivity 

with G and H scalar functions of the configuration, and C the shear mobility tensor 
defined above. 

We further limit the calculation to steady, weak flows. Substitution into the force 
balance (3.2) and integration with the flux equation (3.1) yields the microstructure 
equation for the unknown function f(s) to linear order in Pe as 

-- 1 d  (g(s)s’G(s)dfO) - 6H(s ) -  f (4 = -W(s)  - s(1 - A(s))-  dlng(s) (3.4) 
&Is2 ds ds S2 ds ’ 

where it is understood that the functions g(s), f (s), G(s), H(s) ,  and W(s)  are functions 
of the size ratio 2 and the subscripts for particle type ( i j )  have been omitted for clarity. 
Note that g(s) becomes a simple step function in the two-particle limit (Batchelor 
1977). 

Arguments by Dhont (1987) show that the structure induced by shear distortion 
is a non-analytic function of the shear rate such that the ansatz of linear response 
is not strictly valid. Qualitatively the argument can be demonstrated by examining 
the two-particle Smoluchowski equation, (3.1) and (3.2). The second term on the 
right-hand side of (3.2) describes the flow distortion. Even for small shear rates this 
distortion can be arbitrarily large as s -P co. However, the linear response ansatz 
requires this shear perturbation to always be small relative to the leading-order terms. 
As shown by Dhont, this leads to boundary-layer behaviour at large values of s. 
Fortunately, in the limit of zero shear the effects of this boundary layer can be shown 
to be inconsequential and, rigorously, the linear response term is the valid solution. 
Although the non-analyticity does not affect the work presented here, we caution 
that it does require consideration when solving the Smoluchowski equation for finite 
shear rates. 

4. Results and discussion 
4.1. Bimodal suspensions 

Direct calculation of the functions IH and I’ require hydrodynamic mobilities for 
unequal spheres. These were calculated from Jeffrey’s resistivities, as shown in 
Appendix A. For the Brownian component, the calculation of the non-equilibrium 
structure factor was performed numerically by matrix inversion of the discretized 
version of the linearized Smoluchowski equation. A numerical algorithm (Press 
et al. 1986) was employed for direct inversion of the resultant tridiagonal matrix of 
coefficients. All the hydrodynamic coefficients were interpolated from spline fits of the 



Viscosity of biomodal and polydisperse suspensions 273 

s 

FIGURE 1. The non-equilibrium structure function f(s) plotted for various degrees of size 
asymmetry, 1= 1, 2, 3, 5, 10 top to bottom, respectively. 

a 
1 .o 
1.25 
1.6 
2.0 
4.0 
5.0 
6.4 
8.0 
10 

I B ( 4  
0.950 
0.9 13 
0.848 
0.742 
0.384 
0.297 
0.207 
0.1 50 
0.105 

I H ( 4  
2.50 
2.48 
2.42 
2.34 
2.05 
1.98 
1.92 
1.89 
1.86 

TABLE 1. Bimodal iB and I H  Functions 

coefficients calculated at discrete intervals. All calculations were converged to results 
independent of mesh size and the interval over which the coefficients were calculated. 

The results in figure 1 demonstrate the influence of size asymmetry on the non- 
equilibrium structure f(s). As seen, the entire function shifts to lower and lower values 
with increasing size asymmetry. Thus, shear perturbs the equilibrium structure less for 
pairs of unequal spheres than for equal-sized spheres. This then has a similar influence 
on the Brownian contribution to the Huggins coefficient, which is a weighted integral 
over this function. A similar reduction in the non-equilibrium structure has been 
reported for the sedimentation problem (for equal particle densities) by Batchelor & 
Wen (1982b). 

Results for numerical integration of the functions I B ( A )  and Z H ( A )  are shown in 
table 1 (these functions are defined so as to be equivalent upon A+ l / L  substitution). 

As discussed in more detail in Appendix A, we judge the relative error in the numer- 
ical calculation to be unacceptable for size ratios greater than 10, and hence, do not 
report results for larger size ratios. The results for 1 = 1 compare well with previous 
calculations of Batchelor (1977) (Zs(A) = 0.97 and Z H ( A )  = 2.7) and the later, more 
precise calculations of Cichocki & Felderhof (1988) ( I B ( l )  = 0.913 and I H ( A )  = 2.5), 
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FIGURE 2. The (6’ coefficient of viscosity ( k ~  * 2.5’) for hard-spheres as a function of volume ratio 

for various degrees of size asymmetry, as labelled. 

the primary difference being approximations involved in Batchelor’s interpolations 
for the hydrodynamic functions, as also discussed by Kim & Mifflin (1985). 

These results are plotted as C42 coefficients (C4z = k~ * 2S2) as a function of mixing 
volume ratio 41/ (4~  + 42) and size asymmetry (A) in figure 2. As seen, the viscosity 
minimum deepens with increasing polydispersity and is symmetric in mixing volume 
ratio. Further, the magnitude of the effect is modest, as a significant fraction of the 
coefficient is independent of size ratio (the part coming from renormalization). 

Experimental results for capillary viscometry on dilute suspensions of colloidal 
hard-sphere silica particles by Woutersen & de Kruif (1993) show some similarities 
and differences. For size asymmetries of 1.45 and 1.59, a reduction in the C42 
coefficient of similar magnitude to the predictions is seen upon mixing. Although the 
magnitude of the viscosity reduction with mixing is comparable within the measuring 
uncertainty, the experimental results are not as symmetric in mixing volume fraction, 
showing a slight skewedness toward the larger size. However, larger size asymmetries 
show an increase upon mixing, which is not consistent with the trends computed 
here for hard spheres. Woutersen & de Kruif (1993) speculate that this arises from 
interparticle forces due either to surface charges or depletion forces, neither of which 
is accounted for in this dilute limiting, hard-sphere theory. The latter possibility arises 
from three-body interactions even in very dilute suspensions, which if true suggests 
that accurate measurement of the Huggins coefficient for hard-sphere mixtures is 
virtually impossible. Although there are numerous studies demonstrating viscosity 
reductions for more concentrated systems, we are unaware of any other studies that 
examine the dilute limiting viscosity for hard-sphere colloidal suspensions that would 
be available for comparison. 

The reason for the symmetry in the Huggins coefficient with volume ratio is evident 
from examination of the basic formulas for the stress dipoles. For example, the 
hydrodynamic stress dipole is given by an expression with the following form by 
Batchelor & Green (1972a, b) as 

20 
3 

S: = - R U ; P ~  [Re(Eij,K’(A), L’(A), M’(A), s i j ) ]  , 
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with the functional dependence of Re indicated. So, the dissipation of a particle 
of type i in the presence of another particle j scales as the volume of particle of 
type i times a function of the size ratio, applied flow, and interparticle separation. 
The total dissipation, then, scales as the number of type i times the volume of this 
particle type, summed over all particle types. The symmetry of the dipole expression 
for 1 + l/1 inversion then yields the symmetry in the final viscosity (hydrodynamic 
contribution) for bimodal suspensions. A similar argument holds for the Brownian 
contribution to the total suspension viscosity. As shown by Batchelor (1977), the 
Brownian contribution to the stress can be written as 

where 

By symmetry of forces, the leading term is necessarily zero in the summation, while 
the interaction term, as characterized by the hydrodynamic tensor C, is proportional 
to the stress dipole discussed above. Therefore, the Brownian stress has the same 
symmetry in volume fraction as the hydrodynamic stress contribution, leading to the 
same symmetry in the Huggins coefficient with volume ratio. 

In the experimental studies a viscosity reduction upon mixing is most often observed 
for bimodal suspensions. However, the viscosity minimum is usually seen to lie toward 
suspensions rich in particles of the large size when plotted against volume ratio. A 
similar result has been seen in an approximate calculation by van Iersel (1987) which 
included many-body thermodynamic forces. A more complicated asymmetry was 
obtained by Ohtsuki (1983) for spheres with both size and charge asymmetry. Thus, 
the presence of asymmetry can be attributed to particle interactions beyond the pair 
level and asymmetry in the pair interaction potential. 

Some hypotheses for the reduction in viscosity upon mixing two different sizes of 
particles have invoked an excluded-volume argument (Sweeny & Geckler 1954; Chong 
et al. 1971 ; Ackermann & Shen 1979; Goto & Kuno 1984; Shapiro & Probstein 1992). 
Size asymmetry results in a lower total excluded volume for the same overall volume 
fraction. This reduction in excluded volume is thought to decrease the viscosity 
primarily by increasing the maximum packing fraction and the free volume in the 
suspension. It is unclear if this argument applies to dilute suspensions; however, the 
equations derived for high volume fractions will indeed predict a viscosity reduction 
at lower volume fractions. 

An alternative and perhaps more mechanistic explanation is suggested by the calcu- 
lations presented here for dilute suspensions. As seen, the hydrodynamic coefficients 
that give the dissipation of energy for two spheres in a flow field are lowered by the 
presence of size asymmetry with respect to the equal-size limit. This effect dominates 
in the near field. A calculation using the far-field forms of the hydrodynamic functions 
(which neglect all near field lubrication forces) yields the_exact opposite effect (see 
Appendix B). Thus, as seen in the plots of the function J(s,1) in Appendix A, the 
dissipation due to the applied flow is greatly reduced for spheres in the near field of 
the hydrodynamic interaction range. This shows that the smaller particles are shielded 
by the larger from the applied flow field when they are in close proximity. A similar 
phenomenon has been reported by Batchelor & Wen (1982b) for sedimentation in a 
polydisperse suspension where the smaller particle follows in the wake of the larger, 
and consequently, also for collective diffusion (Batchelor 1983~) .  As the hydrodynamic 

U i = E * R i + E  :Ci. 



276 N. J .  Wagner and A.  J .  T. M .  Woutersen 

coupling is important in driving the non-equilibrium structure and directly determines 
the stresslet due to Brownian motion, the Brownian contribution also decreases with 
increasing size asymmetry because of this shielding. This can be seen quantitatively 
in figure 1 and in the plot of the W(s,A) hydrodynamic function in Appendix A. 
One expects this phenomenon also to be of relevance at higher concentrations, where 
particles are forced into the near field due to packing constraints. 

4.2. Polydisperse Huggins coeficient 
The above results for bimodal suspensions can be used to directly calculate the 
Huggins coefficient for suspensions of polydisperse spheres if the size distribution 
is known. For the purpose of illustration, we will assume a simple Schulz size 
distribution as a realistic model for the polydispersity and use this to calculate the 
variation in the Huggins coefficient with polydispersity index. This calculation will be 
used to access the influence of polydispersity on viscosity measurements in the dilute 
limit. 

A commonly used model for a particle size distribution that is continuous and 
normalized is the Schulz distribution (see Mittelbach 1965; van Beurten & Vrij 1981; 
Hayter 1985). This distribution has the necessary qualities that it does not have 
negative values for radii and that it decays sufficiently rapidly for both large and 
small size ratios to yield a physically meaningful distribution (Wagner et a2. 1991). 
Defining p(a) as the normalized probability of occurrence of particles of radius Q 

results in 

where ii is the mean particle size and x = a/ii, t = a/a with a2 
the variance, r the gamma function, and z j  = z + j .  Another convenient property of 
the Schulz distribution is the ability to express the ratio of any of the size moments 
in terms of readily calculable functions of the polydispersity : 

z = (1 - t2 ) / t2 ,  

n 

Again, there are other possible distributions that could be used in place of the 
Schulz distribution; we are using this one, however, to provide a simple method of 
determining how polydispersity can influence the Huggins coefficient. Typical results 
for this distribution are shown in figure 3, where the distributions are scaled to have 
the same maximum value to emphasize the effects of the variance. 

The general formula for the stress to the $2 level for a polydisperse suspension is 
written as 

where the function I(A) = I H ( A ) + I B ( A )  has been defined above. The function v is just 
the average volume per particle, which upon substitution for the Schulz distribution 
for p(a) yields 

4+3) 4 4 4 3  
x3. 

- v=- -- 
3 3 

To proceed further, a numerical calculation is required as there is no analytic 
form for the function I (A). Unfortunately this procedure, although formally possible, 
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Size ratio 
FIGURE 3. Schulz distribution, normalized, as a function of polydispersity, as labelled. 

is computationally intractable due to the extremely time-consuming computations 
required to construct the function Z(l) at sufficiently fine grid points. Hence, we 
have taken another tack whereby the appropriate value for Z(A) is determined by an 
analytic interpolation formula. Although a simple cubic spline fit to the numerical 
data is possible, we propose an interpolation formula based on physical insight. 
This parameterization helps in reducing the integral to one dimension and should be 
sufficiently accurate for our purposes here. 

The function Z(l) has the symmetry property Z(A) = Z(l/A) and must smoothly 
asymptote to constant values as 1 + 00 and A + 0. Further, as discussed above, 
our numerical results are limited to size ratios below 10 (or above O.l), based on the 
numerical accuracy of the calculated hydrodynamic functions. An analytical form 
that is capable of capturing these requirements is given by 

(4.7) Z(A) = (Z(A = 1) - Z(A + 00)) e-B[(1-A2)lAJ + Z(A -, 00). 

Because of the limitations on the hydrodynamic coefficients, we choose Z(l -+ 00) = 
Z(A = 10). The data for ZH and ZB were fit independently to the above relationship, as 
shown in figure 4, with values of the derived coefficient /I of 0.583 and 0.4811 respec- 
tively. As shown, the analytical fits are in reasonable agreement. This approximation 
is justified from close examination of the Schulz distribution plot, figure 3. Even for 
100% polydispersity, a negligibly small fraction of the particle sizes lies outside the 
interval 0.1 < 1 < 10. Thus, it is more relevant to accurately represent the functions 
within this interval, especially since the contributions from highly asymmetric particle 
size ratios are also weighted less. 

The two-dimensional integral in (4.5) can be reduced to a one-dimensional integral 
through the variable substitution b = al. Direct substitution results in the following 
for the integral term: 

(5> drn 1" Z(l)A3a6p(aA)p(a)dAda. (4.8) 



278 N. J .  Wagner and A.  J .  T. M .  Woutersen 

t 
4 L  

0 1 2 3 4 5 6 I 
( 1 -a*)ia 

RGURE 4. The functional fit to (4.7) for the Brownian contribution (-), data (+) and the 
hydrodynamic contribution (. . .), data (0). 

Substitution of the explicit formulas for the Schulz distributions and integration 
results in, 

l Z + 3  
e-fls+ dl. (4.9) 

(1 + l )*z+* 

r(2z + 8, 
r(z + 4)r(z + 4) 

( I ( l  = 1) - 1(1 + 00)) 1(1 --* co) + 
This formula can be integrated for each force, Brownian and hydrodynamic, to yield 
the $2 coefficient for the polydisperse sample as a function of the normalized standard 
deviation s (the normalized square root of the variance). 

Results for the integrations are shown in figure 5, where it is evident that the 
Brownian contribution is more sensitive to the polydispersity than the hydrodynamic 
and that the total effect is relatively small. A semilog plot demonstrates how the total 
$2 coefficient varies with the standard deviation (figure 6). The line is a best fit of a 
third-order polynomial with the form C,p = 6.00-0.648*~+0.334*~? -0.0586,~~. From 
this figure it is evident that the monodisperse suspension has the highest viscosity 
coefficient and that even 10% polydispersity does not have a distinguishable effect on 
the coefficient. Further, a very broad distribution of 100% yields only a 6% reduction 
in the coefficient (extensions to broader distributions are subject to our calculational 
limitations). One can conclude, therefore, that the effects of polydispersity on the 
dilute limiting viscosity are rather modest in comparison to the effects of interparticle 
forces (see for example Russel 1984). 

The authors are most grateful to Professor D. Jeffrey for providing the necessary 
programs to recalculate his published resistivities for unequal spheres and to Professor 
S. Kim for also providing copies of his programs. Financial support for this program 
was through the National Science Foundation (CTS-9158164). The authors wish to 
thank Dr Kees de Kruif for enabling collaboration between the authors. 

Note added in proof: A recent article by Professor R.B. Jones, to appear in Physica 
A also presents an independent calculation of the hydrodynamic contribution to the 
Huggins coefficient for bimodal suspensions; the results are in agreement with those 
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FIGURE 6. The total C,Z coefficient (0). The curve (-) is a parametric fit, given by 
kH * 2.5* = 6.00 - 0.648 s + 0.334 * S’ - 0.0586 * s3. 

presented here. Further, Professor Jones presents an analytical value for I H ( l  + 00) 

of 1.875, justifying our assumption in using equation (4.7). 

Appendix A. Hydrodynamic functions 
The relevant hydrodynamic functions required for the polydisperse calculations 

are derived from recently published results for unequal-sphere resistivities by 
Jeffrey (1992). A discussion of the physical meaning and source of these func- 
tions can be found in Russel et al. (1989) and Kim & Karrila (1991). The basic force, 
torque, stress relations to the applied velocity fields and particle velocities can be 
expressed either as mobilities, or the inverse, resistivities. The inverse relations for 
these functions can be found in Kim & Mifflin (1985), Jeffrey & Onishi (1984), and 
Kim & Karrila (1991), and so will not be reproduced here. Given the mobilities from 



280 N. J. Wagner and A. J. T. M. Woutersen 

1 .o 

0.8 

0.6 

A 
0.4 

0.2 

0 
2.0 2.5 3.0 3.5 4.0 4.5 5.0 

5 

0.8 

0.6 

0.4 
B 

0.2 

0 

5 

0.8 

0.6 

0.4 
G 

0.2 

0 
2.0 2.5 3.0 3.5 4.0 4.5 5.0 

5 

FIGURE 7(a-c). For caption see facing page. 



Viscosity of biomodal and polydisperse suspensions 

S 

S 

W 

28 1 

S 
FIGURE 7. Hydrodynamic functions calculated for various values of size polydispersity (thick 
line), and the Far-field form (thin line) for L = 10, 5, 2, 1 from top to bottom, respectively. 
(4 &,A); (b )  W,4; (4 G(s,A); ( d )  H(s,A); (e) &,A); (f) W(s,1). 
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numerical inversion of the required resistance matrices, whose elements are available 
numerically from the work of Jeffrey (1992), the required hydrodynamic coefficients 
are then given as combinations: 

&;A) = 2 5 (L 1 + 1  q1 - q2 + a;, - - lyl%) ' 
d 
ds 

W(s;A) = 3(A(s;1)  - B ( s ; ~ ) )  - - ( A ( s ; ~ ) ) ,  

L3J(s;  1-') + J ( s ;  1) 
(1 +13) ' 

l(s;1) = 

J(s;L) = -1 - (27 + 29y + 223,  

All coefficients with a carat are non-dimensional coefficients and follow the notation 
of Kim & Mifflin (1985). 

Note that the final coefficients are symmetric upon 1 inversion while many of the 
intermediate coefficients are not. These coefficients, as functions of s for various 
values of 1 are shown numerically in figures 7 and 8. Because of the multiple levels 
of numerical calculation, it was imperative to check these against known, limiting 
values. All the functions were checked against the far-field forms, given below and 
shown in the plots: 

+..., (A 11) 
20(1 + A3)  - 48(1 + As)  + 80R2(1 + 1) 
(1 + 4 3 s 3  (1 + 4 5 s 5  

A ( s ; I )  = 

1 + A5 + y ( 1  +A) 
+..., 

(1 + 4 5 s 5  
B(s;A) = 32 
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3 a  3 a  
2 s  4 s  G(s; 1) = 1 - - - + . . . , H ( s ;  A) = 1 - - - + . . . , 

41 a=--- 
(1 + A)2‘ 

The numerical calculations all converged to the far-field forms, most by s v_alues on 
the order of s < 5. The most notable deviation is seen for the function J, where 
the far-field form is not valid until very large values of s for highly asymmetric size 
5atios. Limiting values at contact (s = 2) are also known for the functions B, H, and 
J. As seen, these are also in reasonable agreement. It is important to note that the 
coefficients used here are inverted from Jeffrey’s resistivities, which were calculated 
numerically from Jeffrey’s programs using 200 term summations. Therefore, some 
level of numerical inaccuracy arises when large terms cancel at contact to yield the 
desired coefficient. 

Appendix B. Far-field hydrodynamics approximation 
As a check of the numerical accuracy of our calculations and as a possible indicator 

of the qualitative trends, we calculated the Huggins coefficient based upon the 
analytical use of far-field hydrodynamics. The approximation replaces the functions 
.? and W by their first-order, far-field forms, as given in Appendix A above, in the 
stress expressions. The functions G and H are also set to 1, the leading-order term, 
in the Smoluchowski equation. Because of the far-field approximations the boundary 
condition at contact must be replaced by a no-flux condition: 

G(s, A ) y  + s( 1 - A(s, A)) = 0. 

This then enables an analytic calculation of the non-equilibrium structure to leading 
order, as (see for example Russel et al. 1989): 

It is to be noted that the leading-order term is independent of the size ratio, which is 
a consequence of neglecting the important lubrication forces in the contact boundary 
condition. Thus, this is not the correct far-field form for the full s9lution. Using this 
and the analytical expressions for the hydrodynamic coefficients J and W leads to 
the following expressions for the integrals: 

15 1 75 1+L3 B A 
( ) - -  8 (1+A)2’ 

Z*(A) = -- 
8 (1 + 4 3 ’  

Thus, the total Huggins coefficient becomes: 

This is plotted as the 42 coefficient in figure 9, where it is seen that the far-field 
approximation has the same general symmetry as the exact numerical calculations. 
However, in the far-field approximation the Huggins coefficient actually increases with 
size inequality, the opposite trend to that in the exact calculation. This comparison 
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RGURE 9. The C i f  coefficient in the far-field hydrodynamic approximation for various size ratios 1 
as a function of mixing volume ratio. 

supports the interpretation that the near-field hydrodynamic shielding occurs and is 
important in determining both the non-equilibrium structure and the stress dipoles. 
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